Экология потребления. Наука и техника: Какое нужно освещение, чтобы при умеренном энергопотреблении получить полноценно развитое, большое, ароматное и вкусное растение?
Интенсивность фотосинтеза под красным светом максимальна, но под одним только красным растения гибнут либо их развитие нарушается. Например, корейские исследователи [1] показали, что при освещении чистым красным масса выращенного салата больше, чем при освещении сочетанием красного и синего, но в листьях значимо меньше хлорофилла, полифенолов и антиоксидантов. А биофак МГУ [2] установил, что в листьях китайской капусты под узкополосным красным и синим светом (по сравнению с освещением натриевой лампой) снижается синтез сахаров, угнетается рост и не происходит цветения.
Рис. 1 Леанна Гарфилд, Tech Insider — Aerofarms
Какое нужно освещение, чтобы при умеренном энергопотреблении получить полноценно развитое, большое, ароматное и вкусное растение?
В чем оценивать энергетическую эффективность светильника?
Основные метрики оценки энергетической эффективности фитосвета:
PPF всегда получается немного выше, чем YPF (кривая McCree нормирована на единицу и в большей части диапазона меньше единицы), поэтому первую метрику выгодно использовать продавцам светильников. Вторую метрику выгоднее использовать покупателям, так как она более адекватно оценивает энергетическую эффективность.
Эффективность ДНаТ
Крупные агрохозяйства с огромным опытом, считающие деньги, до сих пор используют натриевые светильники. Да, они охотно соглашаются повесить над опытными грядками предоставляемые им светодиодные светильники, но не согласны за них платить.
Из рис. 2 видно, что эффективность натриевого светильника сильно зависит от мощности и достигает максимума при 600 Вт. Характерное оптимистичное значение YPF для натриевого светильника 600–1000 Вт составляет 1,5 эфф. мкмоль/Дж. Натриевые светильники 70–150 Вт имеют в полтора раза меньшую эффективность.
Рис. 2. Типичный спектр натриевой лампы для растений (слева). Эффективность в люменах на ватт и в эффективных микромолях серийных натриевых светильников для теплиц марок Cavita, E-Papillon, «Галад» и «Рефлакс» (справа)
Любой светодиодный светильник, имеющий эффективность 1,5 эфф. мкмоль/Вт и приемлемую цену, можно считать достойной заменой натриевого светильника.
Сомнительная эффективность красно-синих фитосветильников
В этой статье не приводим спектров поглощения хлорофилла потому, что ссылаться на них в обсуждении использования светового потока живым растением некорректно. Хлорофилл invitro, выделенный и очищенный, действительно поглощает только красный и синий свет. В живой клетке пигменты поглощают свет во всем диапазоне 400–700 нм и передают его энергию хлорофиллу. Энергетическая эффективность света в листе определяется кривой «McCree 1972» (рис. 3).
Рис. 3. V(λ) — кривая видности для человека; RQE — относительная квантовая эффективность для растения (McCree 1972); σr и σfr — кривые поглощения фитохромом красного и дальнего красного света; B(λ) — фототропическая эффективность синего света [3]
Отметим: максимальная эффективность в красном диапазоне раза в полтора выше, чем минимальная — в зеленом. А если усреднить эффективность по сколько-нибудь широкой полосе, разница станет еще менее заметной. На практике перераспределение части энергии из красного диапазона в зеленый энергетическую функцию света иногда, наоборот, усиливает. Зеленый свет проходит через толщу листьев на нижние ярусы, эффективная листовая площадь растения резко увеличивается, и урожайность, например, салата повышается [2].
Освещение растений белыми светодиодами
Энергетическая целесообразность освещения растений распространенными светодиодными светильниками белого света исследована в работе [3].
Характерная форма спектра белого светодиода определяется:
Рис. 4. Спектры белого светодиодного света с одной цветопередачей, но разной цветовой температурой КЦТ (слева) и с одной цветовой температурой и разной цветопередачей R a (справа)
Различия в спектре белых диодов с одной цветопередачей и одной цветовой температуры едва уловимы. Следовательно, мы можем оценивать спектрозависимые параметры всего лишь по цветовой температуре, цветопередаче и световой эффективности — параметрам, которые написаны у обычного светильника белого света на этикетке.
Результаты анализа спектров серийных белых светодиодов следующие:
1. В спектре всех белых светодиодов даже с низкой цветовой температурой и с максимальной цветопередачей, как и у натриевых ламп, крайне мало дальнего красного (рис. 5).
Рис. 5. Спектр белого светодиодного (LED 4000K R a = 90) и натриевого света (HPS) в сравнении со спектральными функциями восприимчивости растения к синему (B), красному (A_r) и дальнему красному свету (A_fr)
В естественных условиях затененное пологом чужой листвы растение получает больше дальнего красного, чем ближнего, что у светолюбивых растений запускает «синдром избегания тени» — растение тянется вверх. Помидорам, например, на этапе роста (не рассады!) дальний красный необходим, чтобы вытянуться, увеличить рост и общую занимаемую площадь, а следовательно, и урожай в дальнейшем.
Соответственно, под белыми светодиодами и под натриевым светом растение чувствует себя как под открытым солнцем и вверх не тянется.
2. Синий свет нужен для реакции «слежение за солнцем» (рис. 6).
Рис. 6. Фототропизм — разворот листьев и цветов, вытягивание стеблей на синюю компоненту белого света (иллюстрация из «Википедии»)
В одном ватте потока белого светодиодного света 2700 К фитоактивной синей компоненты вдвое больше, чем в одном ватте натриевого света. Причем доля фитоактивного синего в белом свете растет пропорционально цветовой температуре. Если нужно, например, декоративные цветы развернуть в сторону людей, их следует подсветить с этой стороны интенсивным холодным светом, и растения развернутся.
3. Энергетическая ценность света определяется цветовой температурой и цветопередачей и с точностью 5 % может быть определена по формуле:
Примеры использования этой формулы:
А. Оценим для основных значений параметров белого света, какова должна быть освещенность, чтобы при заданной цветопередаче и цветовой температуре обеспечить, например, 300 эфф. мкмоль/с/м2:
Видно, что применение теплого белого света высокой цветопередачи позволяет использовать несколько меньшие освещенности. Но если учесть, что световая отдача светодиодов теплого света с высокой цветопередачей несколько ниже, становится понятно, что подбором цветовой температуры и цветопередачи нельзя энергетически значимо выиграть или проиграть. Можно лишь скорректировать долю фитоактивного синего или красного света.
Б. Оценим применимость типичного светодиодного светильника общего назначения для выращивания микрозелени.
Пусть светильник размером 0,6 × 0,6 м потребляет 35 Вт, имеет цветовую температуру 4000 К, цветопередачу Ra = 80 и световую отдачу 120 лм/Вт. Тогда его эффективность составит YPF = (120/100)⋅(1,15 + (35⋅80 − 2360)/4000) эфф. мкмоль/Дж = 1,5 эфф. мкмоль/Дж. Что при умножении на потребляемые 35 Вт составит 52,5 эфф. мкмоль/с.
Если такой светильник опустить достаточно низко над грядкой микрозелени площадью 0,6 × 0,6 м = 0,36 м2 и тем самым избежать потерь света в стороны, плотность освещения составит 52,5 эфф. мкмоль/с / 0,36м2 = 145 эфф. мкмоль/с/м2. Это примерно вдвое меньше обычно рекомендуемых значений. Следовательно, мощность светильника необходимо также увеличить вдвое.
Прямое сравнение фитопараметров светильников разных типов
Сравним фитопараметры обычного офисного потолочного светодиодного светильника, произведенного в 2016 году, со специализированными фитосветильниками (рис. 7).
Рис. 7. Сравнительные параметры типичного натриевого светильника 600Вт для теплиц, специализированного светодиодного фитосветильника и светильника для общего освещения помещений
Видно, что обычный светильник общего освещения со снятым рассеивателем при освещении растений по энергетической эффективности не уступает специализированной натриевой лампе. Видно также, что фитосветильник красно-синего света (производитель намеренно не назван) сделан на более низком технологическом уровне, раз его полный КПД (отношение мощности светового потока в ваттах к мощности, потребляемой из сети) уступает КПД офисного светильника. Но если бы КПД красно-синего и белого светильников были одинаковы, то фитопараметры тоже были бы примерно одинаковы!
Также по спектрам видно, что красно-синий фитосветильник не узкополосен, его красный горб широк и содержит гораздо больше дальнего красного, чем у белого светодиодного и натриевого светильника. В тех случаях, когда дальний красный необходим, использование такого светильника как единственного или в комбинации с другими вариантами может быть целесообразно.
Оценка энергетической эффективности осветительной системы в целом:
Автор использует ручной спектрометр UPRtek 350N (рис. 8).
Рис. 8. Аудит системы фитоосвещения
Следующая модель UPRtek — спектрометр PG100N по заявлению производителя измеряет микромоли на квадратный метр, и, что важнее, световой поток в ваттах на квадратный метр.
Измерять световой поток в ваттах — превосходная функция! Если умножить освещаемую площадь на плотность светового потока в ваттах и сравнить с потреблением светильника, станет ясен энергетический КПД осветительной системы. А это единственный на сегодня бесспорный критерий эффективности, на практике для разных осветительных систем различающийся на порядок (а не в разы или тем более на проценты, как меняется энергетический эффект при изменении формы спектра).
Примеры использования белого света
Описаны примеры освещения гидропонных ферм и красно-синим, и белым светом (рис. 9).
Рис. 9. Слева направо и сверху вниз фермы: Fujitsu, Sharp, Toshiba, ферма по выращиванию лекарственных растений в Южной Калифорнии
Достаточно известна система ферм Aerofarms (рис. 1, 10), самая большая из которых построена рядом с Нью-Йорком. Под белыми светодиодными лампами в Aerofarms выращивают более 250 видов зелени, снимая свыше двадцати урожаев в год.
Рис. 10. Ферма Aerofarms в Нью-Джерси («Штат садов») на границе с Нью-Йорком
Прямые эксперименты по сравнению белого и красно-синего светодиодного освещения
Опубликованных результатов прямых экспериментов по сравнению растений, выращенных под белыми и красно-синими светодиодами, крайне мало. Например, мельком такой результат показала МСХА им. Тимирязева (рис. 11).
Рис. 11. В каждой паре растение слева выращено под белыми светодиодами, справа — под красно-синими (из презентации И. Г. Тараканова, кафедра физиологии растений МСХА им. Тимирязева)
Пекинский университет авиации и космонавтики в 2014 году опубликовал результаты большого исследования пшеницы, выращенной под светодиодами разных типов [4]. Китайские исследователи сделали вывод, что целесообразно использовать смесь белого и красного света. Но если посмотреть на цифровые данные из статьи (рис. 12), замечаешь, что разница параметров при разных типах освещения отнюдь не радикальна.
Рис 12. Значения исследуемых факторов в двух фазах роста пшеницы под красными, красно-синими, красно-белыми и белыми светодиодами
Однако основным направлением исследований сегодня является исправление недостатков узкополосного красно-синего освещения добавлением белого света. Например, японские исследователи [5, 6] выявили увеличение массы и питательной ценности салата и томатов при добавлении к красному свету белого. На практике это означает, что, если эстетическая привлекательность растения во время роста неважна, отказываться от уже купленных узкополосных красно-синих светильников необязательно, светильники белого света можно использовать дополнительно.
Влияние качества света на результат
Фундаментальный закон экологии «бочка Либиха» (рис. 13) гласит: развитие ограничивает фактор, сильнее других отклоняющийся от нормы. Например, если в полном объеме обеспечены вода, минеральные вещества и СО 2, но интенсивность освещения составляет 30 % от оптимального значения — растение даст не более 30 % максимально возможного урожая.
Рис. 13. Иллюстрация принципа ограничивающего фактора из обучающего ролика на YouTube
Реакция растения на свет: интенсивность газообмена, потребления питательных веществ из раствора и процессов синтеза — определяется лабораторным путем. Отклики характеризуют не только фотосинтез, но и процессы роста, цветения, синтеза необходимых для вкуса и аромата веществ.
На рис. 14 показана реакция растения на изменение длины волны освещения. Измерялась интенсивность потребления натрия и фосфора из питательного раствора мятой, земляникой и салатом. Пики на таких графиках — признаки стимулирования конкретной химической реакции. По графикам видно что исключить из полного спектра ради экономии какие-то диапазоны, — все равно что удалить часть клавиш рояля и играть мелодию на оставшихся.
Рис. 14. Стимулирующая роль света для потребления азота и фосфора мятой, земляникой и салатом.
Принцип ограничивающего фактора можно распространить на отдельные спектральные составляющие — для полноценного результата в любом случае нужен полный спектр. Изъятие из полного спектра некоторых диапазонов не ведет к значимому росту энергетической эффективности, но может сработать «бочка Либиха» — и результат окажется отрицательным.
Примеры демонстрируют, что обычный белый светодиодный свет и специализированный «красно-синий фитосвет» при освещении растений обладают примерно одинаковой энергетической эффективностью. Но широкополосный белый комплексно удовлетворяет потребности растения, выражающиеся не только в стимуляции фотосинтеза.
Убирать из сплошного спектра зеленый, чтобы свет из белого превратился в фиолетовый, — маркетинговый ход для покупателей, которые хотят «специального решения», но не выступают квалифицированными заказчиками.
Корректировка белого света
Наиболее распространенные белые светодиоды общего назначения имеют невысокую цветопередачу Ra = 80, что обусловлено нехваткой в первую очередь красного цвета (рис. 4).
Недостаток красного в спектре можно восполнить, добавив в светильник красные светодиоды. Такое решение продвигает, например, компания CREE. Логика «бочки Либиха» подсказывает, что такая добавка не повредит, если это действительно добавка, а не перераспределение энергии из других диапазонов в пользу красного.
Интересную и важную работу проделал в 2013–2016 годах ИМБП РАН [7, 8, 9]: там исследовали, как влияет на развитие китайской капусты добавление к свету белых светодиодов 4000 К / Ra = 70 света узкополосных красных светодиодов 660 нм.
И выяснили следующее:
Таким образом, добавление красного к белому целесообразно в частном случае китайской капусты и вполне возможно в общем случае. Конечно, при биохимическом контроле и правильном подборе удобрений для конкретной культуры.
Варианты обогащения спектра красным светом
Растение не знает, откуда к нему прилетел квант из спектра белого света, а откуда — «красный» квант. Нет необходимости делать специальный спектр в одном светодиоде. И нет необходимости светить красным и белым светом из одного какого-то специального фитосветильника. Достаточно использовать белый свет общего назначения и отдельным светильником красного света освещать растение дополнительно. А когда рядом с растением находится человек, красный светильник можно по датчику движения выключать, чтобы растение выглядело зеленым и симпатичным.
Но оправданно и обратное решение — подобрав состав люминофора, расширить спектр свечения белого светодиода в сторону длинных волн, сбалансировав его так, чтобы свет остался белым. И получится белый свет экстравысокой цветопередачи, пригодный как для растений, так и для человека.
Особенно интересно увеличивать долю красного, повышая общий индекс цветопередачи, в случае сити-фермерства — общественного движения по выращиванию необходимых человеку растений в городе, зачастую с объединением жизненного пространства, а значит, и световой среды человека и растений.
Открытые вопросы
Можно выявлять роль соотношения дальнего и ближнего красного света и целесообразность использования «синдрома избегания тени» для разных культур. Можно спорить, на какие участки при анализе целесообразно разбивать шкалу длин волн.
Можно обсуждать — нужны ли растению для стимуляции или регуляторной функции длины волн короче 400 нм или длиннее 700 нм. Например, есть частное сообщение, что ультрафиолет значимо влияет на потребительские качества растений. В числе прочего краснолистные сорта салата выращивают без ультрафиолета, и они растут зелеными, но перед продажей облучают ультрафиолетом, они краснеют и отправляются на прилавок. И корректно ли новая метрика PBAR (plant biologically active radiation), описанная в стандарте ANSI/ASABE S640, Quantities and Units of Electromagnetic Radiation for Plants (Photosynthetic Organisms, предписывает учитывать диапазон 280–800нм.
Заключение
Сетевые магазины выбирают более лежкие сорта, а затем покупатель голосует рублем за более яркие плоды. И почти никто не выбирает вкус и аромат. Но как только мы станем богаче и начнем требовать большего, наука мгновенно даст нужные сорта и рецепты питательного раствора.
А чтобы растение синтезировало все, что для вкуса и аромата нужно, потребуется освещение со спектром, содержащим все длины волн, на которые растение прореагирует, т. е. в общем случае сплошной спектр. Возможно, базовым решением будет белый свет высокой цветопередачи.
Литература
1. Son K-H, Oh M-M. Leaf shape, growth, and antioxidant phenolic compounds of two lettuce cultivars grown under various combinations of blue and red light-emitting diodes // Hortscience. – 2013. – Vol. 48. – P. 988-95.
2. Ptushenko V.V., Avercheva O.V., Bassarskaya E.M., Berkovich Yu A., Erokhin A.N., Smolyanina S.O., Zhigalova T.V., 2015. Possible reasons of a decline in growth of Chinese cabbage under acombined narrowband red and blue light in comparison withillumination by high-pressure sodium lamp. Scientia Horticulturae https://doi.org/10.1016/j.scienta.2015.08.021
3. Sharakshane A., 2017, Whole high-quality light environment for humans and plants. https://doi.org/10.1016/j.lssr.2017.07.001
4. C. Dong, Y. Fu, G. Liu & H. Liu, 2014, Growth, Photosynthetic Characteristics, Antioxidant Capacity and Biomass Yield and Quality of Wheat (Triticum aestivum L.) Exposed to LED Light Sources with Different Spectra Combinations
5. Lin K.H., Huang M.Y., Huang W.D. et al. The effects of red, blue, and white light-emitting diodes on the growth, development, and edible quality of hydroponically grown lettuce (Lactuca sativa L. var. capitata) // Scientia Horticulturae. – 2013. – V. 150. – P. 86–91.
6. Lu, N., Maruo T., Johkan M., et al. Effects of supplemental lighting with light-emitting diodes (LEDs) on tomato yield and quality of single-truss tomato plants grown at high planting density // Environ. Control. Biol. – 2012. Vol. 50. – P. 63–74.
7. Коновалова И.О., Беркович Ю.А., Ерохин А.Н., Смолянина С.О., О.С. Яковлева, А.И. Знаменский, И.Г. Тараканов, С.Г. Радченко, С.Н. Лапач. Обоснование оптимальных режимов освещения растений для космической оранжереи «Витацикл-Т». Авиакосмическая и экологическая медицина. 2016. Т. 50. № 4.
8. Коновалова И.О., Беркович Ю.А., Ерохин А.Н., Смолянина С.О., Яковлева О.С., Знаменский А.И., Тараканов И.Г., Радченко С.Г., Лапач С.Н., Трофимов Ю.В., Цвирко В.И. Оптимизация светодиодной системы освещения витаминной космической оранжереи. Авиакосмическая и экологическая медицина. 2016. Т. 50. № 3.
9. Коновалова И.О., Беркович Ю.А., Смолянина С.О., Помелова М.А., Ерохин А.Н., Яковлева О.С., Тараканов И.Г. Влияние параметров светового режима на накопление нитратов в надземной биомассе капусты китайской (Brassica chinensis L.) при выращивании со светодиодными облучателями. Агрохимия. 2015. № 11.
опубликовано econet.ru
Если у вас возникли вопросы по этой теме, задайте их специалистам и читателям нашего проекта здесь.
P.S. И помните, всего лишь изменяя свое потребление - мы вместе изменяем мир! © econet
Источник: https://econet.kz/
Понравилась статья? Напишите свое мнение в комментариях.
антинаучно! даже для любителя
ОтветитьДобавить комментарий